
Clyso Enterprise Storage
All-Flash Ceph Deployment Guide Version 1.1

07

Table of Contents

Table of Contents...2
Forward..3
Introduction..3
Document Version... 3
High Level Strategy and Planning... 4
Hardware Recommendations.. 4

Ceph Monitors... 4
Ceph Managers... 5
Ceph OSDs..5

OSD General Advice..5
OSD CPU...6
OSD NVMe.. 6
OSD Memory... 8

RadosGW.. 10
CephFS MDS...12
Network..12

Software Configuration.. 12
Operating System.. 12

TCMalloc..13
CPU Power States...13

Networking...14
Cluster Configuration... 14
OSD Configuration...15
Replication and Data Placement... 16

Testing and Verification..18
Monitoring and Maintenance... 19
Conclusion...20

Forward

This document is intended to provide a sneak preview regarding some of the tuning and
optimization ideas that Clyso GmbH is planning for Clyso Enterprise Storage (CES) based on
the open source Ceph project. Many of these ideas are also relevant for the upstream
community release of Ceph, so we have decided to open this document up for community
feedback and discussion as we work on CES. Please keep in mind that this is an initial release
of this document and may continue to grow and change over time.

Introduction

Ceph is a distributed storage platform that provides high scalability and fault tolerance. Using
all-flash drives can significantly improve performance and latency for your Ceph cluster.

Before we begin, please note that setting up a Ceph cluster requires knowledge of Linux
administration, networking, and storage concepts. It's recommended to have experience with
Linux systems and command-line interfaces. It is also helpful to have prior experience
designing and tuning high performance server systems.

Document Version

Date Version Notes

2023-06-22 1.0 Initial Version

2023-07-25 1.1 Forward, Branding/Colors, Fixups/Clarifications

High Level Strategy and Planning

There are multiple ways to deploy Ceph clusters ranging from container based deployments to
bare metal installations using self-compiled binaries or package based installation.

* Container based deployments based on cephadm or Rook have been the official way
Ceph is installed since the Pacific release. They offer certain advantages such as
reduced OS level packaging dependencies and the isolation, co-location, and migration
of Ceph services. The additional complexity of container based deployments can
significantly increase the difficulty when debugging and tuning high performance flash
based Ceph clusters.

* Bare-metal deployments are more static in nature. Typically the administrator has more
control over resource allocation strategies (core/memory pinning, NUMA balancing, etc).
Further, it’s often easier to attach debugging tools to processes and utilize different tools
for performance testing. Upstream Ceph QA testing and most of the upstream Ceph
performance testing still takes place on bare metal clusters. Bare-metal deployments
may also be a better fit for ansible or other config management systems. It should be
noted that cephadm/Rook are the only officially supported and maintained deployment
methods as of 2023. Ansible or other bare-metal approaches may still be possible but
will require additional work and are not currently supported by the project.

A container based deployment strategy may be right for you if you already have experience with
containers or have little interest in performance tuning and testing. A bare metal deployment
may be the right choice if you already have OS and hardware level tuning experience.

Hardware Recommendations

Ceph has unique hardware needs for each daemon. Below we will briefly explore what each
daemon does and how it behaves.

Ceph Monitors

Ceph monitors maintain information about the state of the cluster including placement groups
and OSDs. Clusters should have an odd number of monitors, generally 3 or 5 running on
separate hosts. In modern versions of Ceph, monitors store data in RocksDB. Typically the
monitors have low system requirements even for all flash deployments and can be co-located

on the same nodes as other daemons, such as OSD servers, provided sufficient RAM and CPU
are made available for the MON.

Ceph Managers

The Ceph manager daemon gathers and maintains run time statistics about the cluster and is
responsible for various functions including the dashboard, orchestration, telemetry, and other
features. Generally speaking the CPU and memory requirements are low, however it can
become quite busy for very large clusters where there is a lot of data to maintain. Generally the
manager won’t consume more than one CPU core and may benefit from higher CPU clock
speeds when busy. Typically for large clusters the rate that statistics are collected can be
reduced to also lower resource consumption. These daemons are typically co-located with the
Ceph monitors.

Ceph OSDs

Proper hardware choice for the OSDs is of primary importance for all-flash deployments and will
be the key decision that will ultimately govern the overall performance of the cluster. Given the
importance of getting this right, we’ll break down recommendations into separate sections.

OSD General Advice

Before getting into the finedetails regarding hardware decisions, a summary of the details will be
presented here.

1 While there is no specific rule regarding how many flash devices to utilize in one node,
Clyso has observed that with very high speed NVMe devices it is possible in some
cases to hit per-node scaling limits with 4-6 drives. Price, capacity, and performance
should be carefully considered when deciding OSD node configurations. Generally
smaller nodes with fewer OSDs per node provide higher performance and better fault
tolerance while larger nodes provide higher density and lower upfront costs.

2 OSDs can utilize up to 12+ cores on fast NVMe drives. Expect to potentially be CPU
limited for small IO workloads when utilizing fewer (depending on the speed of the flash
devices used).

3 Use Enterprise Class NVMe drives with power loss protection as they are both safer and
often faster than consumer class drives. Also consider the TRIM implementation of the
device and whether or not online trim is needed and can be used within Ceph.

4 Give OSDs enough memory to avoid onode cache misses and potentially more to cache
object data. Treat suggestions such as “1GB of memory for 1TB of storage space” as
only a very rough estimate.

OSD CPU

All-flash Ceph OSDs can utilize significant CPU resources depending on the workload being
performed. Unfortunately, some vendors previously recommended that flash based Ceph OSDs
only require 2 cores. This is only true in that OSDs can function with 2 cores, but will not
perform well. At Clyso we’ve observed that a high performing flash based Ceph cluster can use
up to 12 cores per OSD in a multi-node deployment running under maximum load. The number
of cores used greatly depends on the workload however. The following table describes the real
performance characteristics from a highly tuned, high performing NVMe Ceph cluster tested by
Clyso using 3X replication. Please note that this cluster does not represent typical out-of-box
Ceph performance. It does however provide a view of what kind of performance can be
achieved with careful tuning and hardware planning.

Workload (3X Rep) Cores Used / OSD Perf / OSD

4MB Read ~1.9 1310 MB/s / OSD

4MB Write* ~3.2 495 MB/s / OSD

128KB Random Read ~3.8 1499 MB/s / OSD

128KB Random Write* ~7.1 359 MB/s / OSD

4KB Random Read ~7.9 79206 IOPS / OSD

4KB Random Write* ~11.9 15966 IOPS / OSD

* Writes are performing at least 3X the work vs reads due to replication

For more information about NVMe OSD CPU usage testing, see the Ceph OSD CPU Scaling -
Part 1 article posted on the Ceph.io blog.

OSD NVMe

Ceph OSDs have specific requirements for the underlying storage devices. Specifically, Ceph
requires hardware level guarantees that all data for all replicas are safely written before a client
is told that a write has succeeded. While many NVMe drives advertise high levels of

https://ceph.io/en/news/blog/2022/ceph-osd-cpu-scaling/
https://ceph.io/en/news/blog/2022/ceph-osd-cpu-scaling/

performance, far fewer are able to maintain that performance when writes are guaranteed to be
persisted. Further, some drives can achieve high burst performance by utilizing a fast tier of
persistent SLC flash, but regress under sustained workloads. Generally, enterprise NVMe
drives perform better for Ceph than consumer drives as shown below.

Chart 1 - FIO-Simulated Steady State OSD 512KB Write Throughput. Enterprise NVMe devices
are up to 30x faster than Consumer devices.

Chart 2 - FIO-Simulated OSD 512KB Write Throughput Over Time. Enterprise NVMe devices
are up to 30x faster than Consumer devices.

The above charts showcase the performance characteristics of 2 consumer class and 2
enterprise class NVMe drives from several manufacturers running a workload designed to
simulate the behavior of Ceph OSDs performing 512KB writes. Both of the enterprise class
drives achieve significantly higher performance than the consumer class drives. This is

primarily due to the power loss protection employed on the enterprise class drives that allow
them to safely ignore synchronization requests.

Enterprise drives are not only faster, but as their name implies they are more reliable for
enterprise use cases such as Ceph. Typically they have higher write endurance than consumer
grade drives and better wear-leveling behavior. For read-oriented clusters, enterprise drives
that have 1 drive write per day (DWPD) are typically sufficient for multi-year deployments with
typical failure rates. For heavy write oriented clusters, drives that have 3 or even 5 DWPD may
be desirable depending on the maintenance burden, overall cluster design, and expected
service life.

By default, Ceph OSDs do not perform online TRIM/discard operations, as not all drives and
firmwares behave well when it is enabled. Carefully consider the impact of trim operations on
the device and whether or not it can be enabled on your cluster. Also consider devices that can
automatically perform background trim internally.

OSD Memory

Ceph OSDs use memory for many purposes ranging from keeping in-memory representations
of the cluster maps and recent operation logs, to caching object data and metadata. Many
Ceph guides recommend 1GB of memory per 1TB of data being stored. While this is a
convenient estimation, it doesn’t really work well for very small or very large drive sizes. An
OSD using a 1TB flash drive will not perform well, or even function consistently, if hard-limited to
1GB of memory. Likewise, the advantage of giving OSDs running on large capacity (30-60TB)
drives dozens of GB of memory is very situational. The more accurate answer is that there are
multiple consumers of memory inside an OSD. Some consumers have constant needs, some
grow with cluster size, and some, like the internal object data and metadata caches, can be
scaled based on performance requirements. Early versions of Ceph required users to tune
each of these settings individually. Some even had different default settings depending on
whether the OSD is running on HDDs or flash devices. This was incredibly confusing for users,
so we decided to try to simplify the process and build a memory management system that
typically only requires the user to specify a single limit that the OSD should try to stay under
called the “osd_memory_target”.

Chart 3 - OSD Memory - Interleaved RBD 4K Randread and RGW 4K LIST/GET (src)

The default OSD memory target is 4GB (In containerized deployments, the memory target may
be set to a fraction of the container limit when osd_memory_target_autotune is set). That’s
enough memory to take care of typical OSD memory needs plus around 1-3GB of memory for
bluestore caches. The exact amount depends on object and in-memory fragmentation along
with other factors. Of the memory assigned to bluestore caches, the most important from a
performance perspective is the bluestore meta (onode) cache. On all-flash clusters, onode
misses are relatively very expensive and should be minimized as much as possible. As a result,
Ceph by default will aggressively prioritize meta cache over data and kv (mostly omap) caches
as can be seen in Chart 3. When the workload switches to the RBD 4KB random read phases
(shown with a light gray background), the meta cache grows while the data cache shrinks. The
overall cache size also shrinks during this period to keep the process’ mapped memory below
the target. This is a result of increased memory fragmentation during those phases.

To check whether or not onodes are being cached effectively, Ceph provides a variety of
per-OSD performance counters that can be checked by running the following command:

$ ceph tell osd.N perf dump

https://docs.google.com/spreadsheets/d/1lSp2cLzYmRfPILDCyLMXciIfdf0OvSFngwXukQFXIqQ/edit?usp=sharing

For example, the following two counters show how effectively the OSD is caching onodes:

"onode_hits": 13789150,
"onode_misses": 46427,

Clyso recommends that for all-flash clusters, it is beneficial to keep the onode cache hit rate at
90% or higher. As a rule of thumb, scale the osd_memory_size (or the container limit) based on
how much hot data you expect to be active on the cluster at the same time. If most of the data
stored in the cluster is typically cold, you may be able to stick with the default memory target. If
a large percentage of the data is hot, especially on large drives, it may be beneficial to use 8GB
or higher memory targets.

In addition to cache hit rate counters, OSDs also provide performance counters showing how
Ceph’s prioritycache memory management system is prioritizing memory for each cache at
different priority levels. For instance, the following snippet shows how memory is being assigned
to the bluestore’s “meta” cache at different priority levels:

"bluestore-pricache:meta":
"pri0_bytes": 0,
"pri1_bytes": 29880,
"pri2_bytes": 178434427,
"pri3_bytes": 14895681,
"pri4_bytes": 14940,
"pri5_bytes": 59761,
"pri6_bytes": 0,
"pri7_bytes": 0,
"pri8_bytes": 0,
"pri9_bytes": 0,
"pri10_bytes": 0,
"pri11_bytes": 0,
"reserved_bytes": 75000767,
"committed_bytes": 268435456

The priority cache counters provide a detailed view of how Ceph is prioritizing memory
allocations for each cache. When viewed over time, you can watch how Ceph changes the
priority of different memory allocations based on the current workload.

RadosGW

With HDD Ceph deployments, a single or modest number of RadosGW instances may be
sufficient to provide a balanced architecture. With all-flash deployments, significantly more

RadosGW instances with significantly higher hardware requirements may be necessary to
achieve optimal performance. As part of the testing for the Reef release of Ceph, Clyso ran a
variety of NVMe backed RGW tests here. What we saw is that when utilizing 20 RGW
instances on a 60 NVMe Ceph cluster, we could achieve network saturation during large object
tests and relatively heavy OSD load during small object tests. A ratio of 1 RGW daemon for
every 3 OSDs is unreasonable at scale however, and the CPU consumption of RGW daemons
was significant. In fact the aggregate CPU consumption of RGW daemons was higher than it
was for the OSDs in multiple tests:

4MB Objects:

Test Result Total RGW
Cores

Total OSD
Cores

Total Cores RGW/OSD
Core Rato

4MB PUT 18.6GB/s 184 Cores 152 Cores 336 Cores 6/5

4MB GET 53 GB/s 88 Cores 55 Cores 143 Cores 8/5

In the above test, throughput was primarily limited by Network bandwidth, as the RGW daemons
were colocated with the OSD nodes and had to share the same 100GbE links.

4KB Objects:

Test Result Total RGW
Cores

Total OSD
Cores

Total Cores RGW/OSD
Core Rato

4KB PUT 178K PUT/s 269 Cores 475 Cores 744 Cores 11/20

4KB GET 312K GET/s 302 Cores 102 Cores 404 Cores 3/1

In small object tests, CPU usage and round-trip latency for bucket metadata played a bigger
role in aggregate performance than network throughput. Bucket index contention between the
RGW daemons may have played a significant role. As a result, we expect that scaling the
number of RGW daemons significantly higher than the 20 tested here may be difficult without
careful planning. Clyso believes additional tuning and code optimization may improve RGW
CPU usage and performance in the future. RGW may also show higher efficiency (though with
lower performance) when fewer daemons are utilized. For now, it may be necessary to allocate
significant CPU resources when attempting to achieve maximum performance for RGW
daemons backed by a cluster of flash based OSDs. RGW and any HAProxy nodes may also
require a significant network bandwidth investment to match the aggregate throughput of the
OSD nodes for large object workloads.

https://ceph.io/en/news/blog/2023/reef-freeze-rgw-performance/

CephFS MDS

Ceph employs one or more metadata servers to service metadata requests for the CephFS
distributed file system. A single MDS can be sufficient for all-flash Ceph clusters so long as the
number of file and directory metadata operations remains limited. For metadata intensive
workloads, multiple active MDSs may need to be deployed. Each MDS has relatively low CPU
requirements, typically using no more than 2-3 cores each. High clock speeds are generally
beneficial. Ceph MDSes have a distributed cache that can grow quite large with many clients.
Under heavy metadata workloads, it may be necessary to assign dozens of GB of memory to
the MDS cache. In some heavy metadata use cases a single MDS can use 80GB of memory or
more at once.

Network

With All-Flash Ceph deployments the latency and throughput of the network can have a
dramatic impact on overall performance. Clyso’s standard recommendation to use 1 interface
or 2 interfaces in a bonded configuration with separate VLANs for the front and back network
still apply. If two independent interfaces are used, make sure not to put them in the same
subnet. It is best to choose high performance NICs with enough throughput to meet recovery
and large read/write operation needs. When using NVMe drives, this may mean 1-2GB/s per
OSD or more. To the extent possible, attempt to purchase switches that have low latency and
full bisection bandwidth. Keep OSDs on the smallest switch topology possible, even just a
single switch for smaller deployments. Otherwise, carefully plan the network topology based on
overall throughput and latency needs. Use high quality cables and optics and keep runs to the
OSD nodes as short as possible.

Software Configuration

In addition to picking well balanced hardware, it may be necessary to carefully tune certain
aspects of both Ceph and the host operating system as well. In container deployments this can
be especially tricky to get right as it’s not always clear at what layer optimizations should be
made. Below we will discuss several high level issues to watch out for.

Operating System

Ceph can work well with multiple linux distributions, however there are a couple of key issues to
consider that are especially important for flash based Ceph deployments.

TCMalloc

It is critically important that Ceph be compiled with tcmalloc support. Ceph will be both slower
and use significantly more memory without it. You can verify this by checking that tcmalloc is
included by running the following command:

$ ldd /usr/bin/ceph-osd | grep tcmalloc
libtcmalloc.so.4 => /lib64/libtcmalloc.so.4

Note that the ceph-osd executable may be located in a different directory depending on the
distribution and method of installation. As of the time of this writing, neither the Ubuntu nor
Debian distribution packages for Ceph are compiled with tcmalloc support. Clyso informed
Canonical of the issue in May of 2023 and a resolution is in the works. Beyond having Ceph
itself compiled with tcmalloc support, it may also be important to have any clients that use the
ceph libraries also compiled with tcmalloc support. In the fall of 2022, Clyso’s research and
development team performed a study on QEMU/KVM client performance and found that
compiling QEMU with tcmalloc support made a huge difference in single-client performance
when utilzing an all-flash Ceph Cluster. As of the time of this writing, few, if any, distribution
packages for QEMU are compiled with tcmalloc support enabled.

16K Randread IOPS Improvement

QEMU without TCMalloc 53.5K IOPS 0%

QEMU with TCMalloc 80.0K IOPS 49.5%

CPU Power States

Preventing CPUs from transitioning back and forth between low and high power states on OSD
nodes can result in a significant latency reduction and performance improvement. One of the
easiest ways to accomplish this is to use tuned-adm. Tuned-adm is available on RedHat and
Debian based distributions and may be available for others as well. Tuned typically defaults to
the throughput-performance profile:

$ tuned-adm active
Current active profile: throughput-performance

Clyso recommends the latency-performance or network-latency tuned profile as both have
several useful default tunings for Ceph. This can be set using the following command:

$ sudo tuned-adm profile network-latency

https://ceph.io/en/news/blog/2022/qemu-kvm-tuning/

Networking

High speed network interfaces and switches may need additional tuning to achieve the highest
performance and lowest latency possible with Ceph. While this guide will not get into every
detail of network tuning, we will offer that general advice for tuning high speed networks is
applicable. There are several very detailed guides at ESNet that may be of use:

https://fasterdata.es.net/network-tuning/
https://fasterdata.es.net/assets/Papers-and-Publications/100G-Tuning-TechEx2016.tierney.pdf
https://fasterdata.es.net/host-tuning/linux/100g-tuning/

Cluster Configuration

Most of Ceph’s default settings are reasonable, though there are a couple of general details to
watch out for.

1 Debugging, especially at high levels in the messenger or OSD code, can have a
dramatic effect on performance and latency with all-flash deployments. It can also very
quickly fill up the disk that logs are stored on. Be careful not to leave high debug levels
enabled indefinitely. Debugging defaults are generally optimal.

2 By default RGW records information about every request in the rgw log to improve
visibility into access attempts. For high speed flash deployments this leads to extra
overhead and disk usage on rgw installations. Disabling the rgw access log may
improve performance and efficiency but increase security risk. Clyso does not
recommend disabling it for public deployments or in any case where security is a
concern. This setting can be controlled with the debug_rgw_access config option.

3 On large clusters with many OSDs (or small clusters where the PG count is higher
than normal), the mgr nodes may slow down due to the number of PG stat updates.
If this is the case, the frequency of mgr updates can be controlled using the following
two options:

mgr_tick_period
mgr_stats_period

https://fasterdata.es.net/network-tuning/
https://fasterdata.es.net/assets/Papers-and-Publications/100G-Tuning-TechEx2016.tierney.pdf
https://fasterdata.es.net/host-tuning/linux/100g-tuning/

OSD Configuration

There are a couple of decisions to make regarding how OSDs are deployed on flash drives.
One of the first ones that comes up is whether or not to deploy multiple OSDs on a single flash
device. In previous versions of Ceph, if you had enough CPU and memory, performance was
almost universally higher on flash drives if you put multiple OSDs on the same device. During
the Ceph Pacific development cycle, the performance of the Ceph OSD code was improved to
the point where this was not always universally true.

Chart 4 - Effect of placing multiple OSDs on a single NVMe device by Ceph Release (src)

Since then, the performance of Ceph OSDs has improved further. Clyso has received reports
that on some hardware configurations there are still advantages to putting 2 OSDs on a single
NVMe drive, while others show little advantage (and in fact increased memory and potentially
CPU consumption with increased context switching overhead). For most SATA/SAS and
standard enterprise grade NVMe flash drives, it may no longer be worth the complexity trade-off
to double the number of OSDs on each node. For high performance drives, there may still be
an advantage. Again, this is likely only true if there are enough resources to fully support
doubling the OSDs with the associated increase in resource consumption.

To control the number of OSDs per device, the following orchestration invocation can be used:
ceph orch daemon add osd ceph-nvme01:/dev/nvme0n1,osds_per_device=1

https://docs.google.com/spreadsheets/d/1e5eTeHdZnSizoY6AUjH0knb4jTCW7KMU4RoryLX9EHQ/edit?usp=sharing

There are several OSD level tunables that are useful to examine, particularly when Ceph OSDs
are CPU constrained or there are many OSDs on a single host.

Option Default Notes

osd_op_num_shards_ssd 8 Large values can improve maximum
performance and also improve low-load
latency. Small values can improve
efficiency and may improve performance
when CPU constrained.

osd_op_num_threads_per_shard_ssd 2 There is little benefit to increasing this in
Reef or earlier vs increasing shards.
Future benefits may be possible.
Decreasing to 1 may increase efficiency
in very CPU limited scenarios.

ms_async_op_threads 3 Little value to increasing this.
Decreasing this can improve efficiency
and improve performance if there are
many OSDs on the same node.
Decreasing this may hurt performance
when there are fewer OSDs on the
same node.

osd_op_queue mclock For Quincy and earlier, the wpq op
queue may behave better during
recovery.

In addition to Ceph OSD tunings, there are a large number of complex RocksDB tunings that
can impact Ceph all-flash performance. Clyso R&D researched and authored the new RocksDB
tuning that will be released with the Reef release of Ceph in Q2 2023. It may, however, be
worthwhile to explore alternate tuning for older releases as well. See the blog post written by
Clyso’s R&D team here and the new RocksDB tuning we authored for Reef here.

Replication and Data Placement

Ceph allows several replication strategies for pools. Primarily, the user can choose between
replication (typically 3) and erasure coding. There are space amplification, write-amplification,
and performance considerations with each.

Large Reads Large Writes

https://ceph.io/en/news/blog/2022/rocksdb-tuning-deep-dive/
https://github.com/ceph/ceph/pull/51821

Replication is faster than erasure coding due
to all reads serviced from a single OSD
instead of fetching chunks from multiple
OSDs. Replication has lower network
overhead.

Erasure coding is often faster than replication
due to lower write-amplification. Erasure
coding typically has lower space-amplification
as well.

Small Reads

Replication is typically much faster than
erasure coding due to all reads serviced from
a single OSD. Replication has significantly
lower latency as no secondary OSDs need to
be contacted.

Small Writes

Replication is typically much faster than
erasure coding due to lower latency and
lower write-amplification. Erasure coding has
significant potential for high
space-amplification due to Ceph’s 4K
minimum allocation size.

Beyond a replication or erasure coding strategy, Ceph pools are configured with a certain
number of PGs. By default, ceph will try to automatically scale the number of PGs based on the
amount of data in the pool, and further will try to automatically balance the distribution of data
across PGs. Unfortunately this is a mixed bag. The process of growing and shrinking the pool
PG count imposes extra overhead as a background workload, and often results in low PG
counts that hurt performance. Theoretically balancing the distribution of data more evenly
across PGs can help, but that’s only part of the problem. For all-flash clusters, PG lock
contention inside the OSD can itself become a major bottleneck. The following chart
showcases how dramatic the PG count in an RBD pool can affect performance:

Chart 5 - The Effect of Pool PG Scaling on RBD Performance (src)

In the above set of tests, the PG count was increased significantly beyond the default Ceph
limits and continued to improve 4K random read performance up to 16384 PGs. There are
downsides to setting extremely large PG counts. Without additional tuning, OSDs will consume
more memory leaving less for cache and PG stat updates to the manager might cause
additional overhead. To set the PG count this high, several options must be set.

For example:

osd_pool_default_pg_autoscale_mode = off
mon_pg_warn_max_object_skew = 0.0
mon_pg_warn_min_per_osd = 0
mon_pg_warn_max_per_osd = 32768
mon_max_pg_per_osd = 32768

Testing and Verification

There are many tools that can aid in performance testing for all-flash Ceph clusters. Below is
an incomplete list that may be helpful:

https://docs.google.com/spreadsheets/d/1-mMN-xchunm0ZxZWDf0Zl_o-Qrhsfhf06dQuEvFbRX4/edit?usp=sharing

Tool Description URL

cbt Ceph Benchmarking Tool https://github.com/ceph/cbt

fio File/Block Benchmark https://github.com/axboe/fio

hsbench S3 Benchmark https://github.com/markhpc/hsbench

sibench S3/Ceph Benchmarks https://github.com/SoftIron/sibench

collectl System Monitoring https://collectl.sourceforge.net/

perf CPU Profiler https://perf.wiki.kernel.org/index.php/Mai
n_Page

uwpmp Wallclock Profiler https://github.com/markhpc/uwpmp

eBPF Kernel and Userland Tracing https://ebpf.io/

Monitoring and Maintenance

As the cluster ages and the amount of data stored grows, certain operations in Ceph may
become slower. RocksDB for instance may need to traverse through more levels to find object
metadata, and the disk allocator may spend slightly more time searching for contiguous free
space if bluestore has become fragmented. All-flash Ceph clusters should be more resilient to
some of these issues, however there are a couple of things to keep in mind.

1 Generally it’s best to operate below maximum capacity. There is no hard rule regarding
how close to full is too close. If you are above 50% capacity however, you may want to
carefully watch the growth rate and start planning an expansion. Running near capacity
can be dangerous: Losing a rack, node, or even just a drive may cause recovery to fail if
there isn’t enough capacity remaining to write out new replicas of the data. Recovery
itself puts more write load on the devices which increases the probability of a second
failure during the recovery process. It can also be slower and harder on the flash
devices to run a cluster near maximum capacity when freespace is fragmented.

https://github.com/ceph/cbt
https://github.com/axboe/fio
https://github.com/markhpc/hsbench
https://github.com/SoftIron/sibench
https://collectl.sourceforge.net/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/markhpc/uwpmp
https://ebpf.io/

2 Many flash devices require periodic trims/discards to maintain high performance and
reduce internal write amplification. The compatibility, overhead, and duration of trim
operations is different for every device. Ceph does not enable automatic runtime
trimming of devices by default, however does have several options that govern this
behavior:

bdev_enable_discard
bldev_async_discard

3 It is a good idea to periodically inspect the SMART status of flash based OSD devices
and make sure that there are no warnings and/or quickly degrading wear counters
shown. Pay attention to the rate of change of the media wearout indicators and plan to
replace SSDs well ahead of their wearout.

4 In rare cases, Clyso has observed that an individual flash device can become extremely
slow without showing any signs of poor health via SMART status or other means. This
can have a dramatic impact on overall cluster performance. If the cluster shows a
sudden degradation in performance without any other explanations, it may be a good
idea to individually test OSDs with ceph osd perf and ceph tell osd.X bench
and look for outliers.

Conclusion

This concludes our deployment guide for all-flash Ceph clusters. Remember to consult with
your vendor or the official Ceph documentation and user community for detailed instructions and
configuration references. Deploying an all-flash Ceph cluster requires careful planning and
consideration of your workload requirements, so it's essential to thoroughly test and validate the
performance and reliability of the setup. Clyso can provide assistance for any step in the
process and provide support for your storage needs.

